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a b s t r a c t 

The energy use prediction of building systems is crucial to design a high-efficiency building and maintain 

low energy consumption operation, which is also important in optimizing building system control and 

retrofitting. This paper demonstrates a comparative study of four data-driven methods used in online 

building energy predictions involving large-scale data extracted from several types of buildings. The char- 

acteristics of building electricity use and data reliability were addressed through the data pre-treatment 

process including visualization, cleaning, parsing and filtering. Mathematical algorithms and their appli- 

cations in previous studies were summarized and compared, and evaluation methods were developed. 

The performance and suitable application scenarios of the proposed algorithms were conducted via the 

comparison of monitoring data and predicted results. The study indicates that the most complex method 

which requires the highest computation ability, i.e., the Artificial Neural Network (ANN), does not lead to 

the highest accuracy, while as the fastest computation method, Gaussian Process Regression (GPR) usually 

has the results with the lowest accuracy. Support Vector Machine (SVM) and Multivariate Linear Regres- 

sion (MLR) methods usually perform better in the case scenarios studied. All the prediction accuracies 

can meet the requirements of RMSE < 30% and NMBE < 10% proposed by ASHRAE, and the computation 

time varies from less than 1 s to 22 s per prediction. All these methods/algorithms worked well for 

buildings with stable energy use patterns. For buildings with complex and unstable occupancy schedules 

and energy use patterns, MLR and SVM methods have the ability to achieve a high accuracy with fast 

computation speed. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Building energy use prediction plays a crucial role in build-

ng energy management and performance improvement, which is

aramount in building commissioning especially for energy saving

stimation [1] , fault detection and diagnosis, efficiency optimiza-

ion, and smart building practice [2] . There are five main cate-

ories of energy use that can be applied in building energy use

rediction: whole building or sub-metering electricity, heating en-

rgy, cooling energy, fossil fuel and others [3] . The available pre-

iction methods can also be used to simulate building control sys-

ems, such as the model predictive control [4] . 

The energy prediction methods used in buildings can be clus-

ered to three categories: (i) physical-based approaches; (ii) data-

riven approaches; (iii) hybrid approaches that combine the first

wo methods [2,5] . The physical-based approach requires kernel
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hysical components, thermal performance, and their correspond-

ng numeric values, while data driven methods use purely histori-

al data to predict energy performance of a building [6] . The hybrid

odel can also be treated as a grey-box model, which can use par-

ial data and is quite practical in online building energy predictions

7] . 

The physical model is the basis of several popular simulation

ools such as DOE-2, EnergyPlus and DeST [8] . Since physical-based

odels require underlying assumptions and specified input pa-

ameter values, which made them time-consuming to establish a

odel but easier to integrate all the components in the building

ystem. By contrast, data-driven methods are usually more efficient

nd can be compiled to current artificial intelligence (AI) systems

sed in buildings [9] . On the other hand, the data-driven building

nergy use prediction does not require the detailed energy analysis

r data about the simulated building and alternatively learns from

istorical/available data for predictions [10] . 

Currently, the most popular data-driven methods in building

nergy predictions are the artificial neural network (ANN), support

https://doi.org/10.1016/j.enbuild.2019.04.029
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vector machine (SVM), decision trees and statistical approaches

[11] , and some other methods, such as random forest and Gaussian

mixture model, have also been used [12] . These data-driven pre-

diction methods have been used for different building types and

various data resources, and different combinations and strategies

were widely discussed in the previous research [13] . 

Using ‘Ensemble Bagging Trees’ (EBT), with the input data of

meteorological parameters and building-level occupancy and me-

ters [6] , hourly electricity demands can be predicted accurately,

which is critical to estimate and predict utility bills. Another re-

search used the national data from the Commercial Buildings En-

ergy Consumption Survey (CBECS), and then a gradient boosting

regression was proved to be more effective than the linear regres-

sion and SVM, since this gradient boosting regression model only

demands five parameters [14] . 

In the UK, a supermarket and its gas and electricity usage data

were taken as an example. The multiple regression was proved to

be flexible with a high accuracy, and the temperature was found

more influential than humidity [15] . Residential load forecasting

was also discussed using the log-normal process and conventional

Gaussian process prediction, while the log-normal process per-

formed better in terms of accuracy [16] . Multiple linear regression

and neural network models have revealed that the difference be-

tween household energy demand predictions is relatively small re-

gardless of the effect of different methodologies, and the uncer-

tainty level still has a great effect on energy use prediction results

[17] . 

Some researchers also compared the usage of different pre-

diction algorithms and their superiorities in certain scenarios. A

city scale energy use prediction uses the ordinary linear regression

(OLS), random forest, and support vector machine to fit the energy

benchmarking data, including electricity and natural gas, while the

OLS algorithm was identified as the best approach [18] . 

Among the AI approaches, ANN and SVM are widely used meth-

ods to improve the accuracy and other predication performances.

Hybrid methods integrating SVM with other methods are preferred

such as the Least Square Support Vector Machine (LS-SVM) [19] .

These two methods (ANN and SVM) have also been used in heat-

ing and cooling energy predictions with low percentage errors

[20] . Multiple regression and extreme learning machine can also

be used in the heating system prediction, such as the thermal re-

sponse time in an optimal control [21] . A work in predicting the

electricity consumption of a building in Turkey was done to com-

pare different methods, including SVM, LS-SVM, ANN and regres-

sion methods, and the LS-SVM was proved to be an accurate and

fast computation approach among them [22] . 

Hybrid methods of other combinations are also recommended,

such as combining neural network and optimization methods to-

gether [23] . For example, decision tree and ANN can be integrated

as a hybrid model for both prediction and classification in the pre-

diction process, and then a unified objective function will be re-

solved based on either continuous or discrete parameters [24] . 

The data extraction and selection procedure is also important

and critical. A residential building in France showed an improved

prediction and performance by using the data of only representa-

tive days instead of all of the days, which can mitigate the bur-

den of data monitoring and collecting [25] . A principal component

analysis was proved to be effective in the energy prediction of ap-

pliances and lighting systems, together with the occupant activity

recognition [26] . For instance, a random forest approach has iden-

tified the educational feature to be the most influential factor for

regional energy use density [27] . 

The previous methods usually used one consistent method

based on historical data or simulated data in a software package

by assuming a consistent schedule, which lacks enough capacity

to deal with fluctuated operational complexity and thus cannot re-
ect the industrial need in efficient and accurate predictions. To

liminate such limitations, our research uses big data sets collected

rom six real buildings with different building types/functions and

ccupancy schedules. These data were stored in a dynamic Mi-

rosoft SQL server database, which have been cleaned and mapped

n a common data schema [28] . Principal component analysis in-

luding meteorological parameters and occupancy schedules were

arried out to reduce the computation complexity, and then en-

rgy use prediction results were compared to reach the least bias

nd computation burden. Commonly recognized methods, includ-

ng support vector machine, artificial neural network, Gaussian

rocess regression and multivariate linear regression, were used

o verify their effectiveness and identify their optimal applications.

hose methods were proved to be efficient and accurate in previ-

us research based on simulated data by using the physical based

ethods, such as the data generated by using EnergyPlus. The ker-

el functions or inputs were selected based on our preliminary

tudies, and computational time was also used to evaluate their

omputational efficiency. Necessary data process methods and vi-

ualization were also carried out along with the optimal methods

or the selected buildings. 

. Technical methods 

The basic work flow of this research includes data collection,

re-processing, prediction algorithms, and result comparison and

erification. The data are collected as the actual building operation

ata from its SQL server database, and then principal components

ere extracted according to its impact on the building electricity

se. Data cleaning, parsing and filtering were carried out, and the

lectricity uses of six different buildings ( Table 1 ) were predicted

ith the prediction algorithms including support vector machine,

rtificial neural network, Gaussian process regression and multi-

ariate linear regression, which are all popular supervised machine

earning methods based on the literature review. The prediction re-

ults of four different methods were then integrated to the large

cale building energy monitoring system, to compare their results

ith the actual energy use obtained by looking at the pre-defined

riteria including deviation values, percentage and statistical anal-

sis. Their effectiveness and computational performance were then

valuated and compared to each other, including their suitable ap-

lication scenarios. 

Table 1 shows the building information of the six target build-

ngs, all of which are using Variable Air Volume (VAV) systems

ith two of them having Monomer Air-Conditioner (MAC) installed

n some special rooms/units. 

The energy use of a building can be represented as a simpli-

ed function of multiple parameters, i.e., meteorological parame-

ers and human activity schedules, used as independent variables

o predict the electricity usage, and their optimal applications were

onducted through several evaluations. 

A simplified representation of our model is shown below: 

(x) = δ( x 1 ) + η( x 2 ) + ε( x 1 x 2 ) (1)

The parameters refer to the building, climate and occupant be-

avior property, where x 1 means the meteorological parameters af-

er data transformation, and x 2 refers to the human behaviors and

peration schedule after data transformation, which are all verified

hrough data cleaning, parsing and filtering process. 

.1. Support vector machine 

Support vector machine (SVM) is a supervised machine learning

ethod, which is popular in dimensional analysis, machine learn-

ng, image recognition, data classification and prediction. It is most
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Table 1 

Building information of case study buildings. 

Building name & type Building location Building size (m 

2 ) HVAC system Construction year Annual electricity use (million kWh) 

Office-1 West Shanghai 39,0 0 0 VAV 2011 3.32 

Office-2 West Shanghai 50,400 VAV 2011 2.73 

Hotel-1 West Shanghai 59,400 VAV 2013 2.14 

Hotel-2 West Shanghai 49,800 VAV 20 0 0 15.88 

Shopping Mall-1 West Shanghai 22,0 0 0 VAV + MAC 2007 15.61 

Shopping Mall-2 West Shanghai Unknown VAV + MAC Unknown 12.49 

Fig. 1. Diagram of Support Vector Machine [29] . 
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ppropriate for a small sample with high dimensions, especially for

he data with non-linear property. 

If the data set contains data points in an n-dimensional to an

nfinite-dimensional space, the SVM can classify data into two dif-

erent classes by identifying the best hyperplane to separate them.

he best hyperplane for an SVM is the one with the largest mar-

in of the different classes. Mar gin means the maximal width of

he slab parallel to the hyperplane that has no interior data points.

hese data points that are closest to the separating hyperplane are

dentified as support vectors, as shown in the Fig. 1 . 

An optimal hyperplane can then be calculated, which is always

n the n-1 dimension, and thus SVM can be used in the classifi-

ation of image recognition and building system fault detection. It

an also be altered to predict building energy use as a regression

ethod. 

In its regression application, the data were sampled to a high

imensional feature space by a kernel function first, and then the

rojected input data will be calculated by using a linear regression.

he regression equation is shown below [29] : 

f (x ) = 

N ∑ 

i =1 

( αi − α∗
i )G( x i , x ) + β, β ∈ R (2)

.t. 

{ 

N ∑ 

i =1 

( αi − α∗
i 
) = 0 

0 ≤ αi , α
∗
i 

≤ C 

The equations have three key components, where αi and α∗
i 

are

agrange multipliers, and C is the threshold which is called penalty

arameter. The crucial equation in projecting original data to the

igh dimensional feature is G( x i , x ), and there are three types of

opular kernel functions and other user-defined functions: 

inear Kernel : G( x i , x ) = x ′ x (3)
i 
aussian Kernel : G( x i , x ) = exp (−‖ 

x i − x ‖ 

2 ) (4)

olynomial Kernel : G( x i , x ) = (1 + x ′ i x ) p 

where p is in the set { 2 , 3 , . . . } . (5) 

Different kernel functions are evaluated in the prediction train-

ng process, indicating that the linear kernel is the most computa-

ion efficient kernel and the Gaussian kernel shows a good perfor-

ance, which is suitable for analyzing non-linear data. 

.2. Artificial neural network 

Artificial neural networks (ANN) are data mining algorithms

reated based on the biological neural networks, which are de-

igned to be a supervised machine learning method. The ANN

odel is claimed to have a relatively high accuracy compared to

ther methods with low computation burdens [27] . Besides, the re-

ationship between prediction and dependent (output) variables is

ot required before the model implementation because the super-

ised learning process will identify it during the model creation

rocess. This study uses a multilayer feedforward network to es-

ablish the neural network using a backpropagation algorithm. A

ypical neural network has three layers: input, hidden, and output

ayers [28] . The input layer includes n neurons determined by the

umber of input data variables; the output layer has a single neu-

on for the dependent variable; and the hidden layer has 2n + 1

eurons for a preliminary structure. 

The ANN model applied in the prediction of building electricity

nergy consumption can use the same data set as other methods,

ut with simplified climate parameters and occupancy schedules

s the dependent variables and the energy use as the output vari-

ble. The simplified climate parameters were used because they

an greatly decrease the computation time that is needed, but the

rediction accuracy will not be greatly affected at the same time

ased on our preliminary study. 

.3. Gaussian process regression 

Gaussian process regression (GPR) models are nonparametric

ernel-based probabilistic models, which use a finite number of

oint or multivariate Gaussian distribution to accumulate the ac-

ual data distribution. 

A linear regression model based on Gaussian process regression

s of the form: 

 = x T β + ε (6) 

here ɛ ∼ N (0, σ 2 ), and the coefficients matrix of β is estimated

rom the data as well as the error variance σ 2 . A GPR model ex-

lains the response by introducing latent variables, f ( x i ), i = 1, 2,

, n from a Gaussian process (GP), and explicit basis functions, h.

hen a mean function m(x) and covariance function, k(x,x ′ ) will

efine the Gaussian process, so an instance of response y can be

odeled as 

 ( y | f ( x ) , x ) ∼ N( y | h ( x ) T β + f ( x ) , σ 2 ) (7)
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Fig. 2. Illustration of the joint Gaussian distribution of all case buildings’ energy use. 
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Based on the physical knowledge of building energy usage, the

energy use of a building system or a whole building should follow

an appropriate Gaussian distribution under a similar meteorolog-

ical condition. Then the energy use of a whole building during a

long period can be identified as joint Gaussian distributions with

different probabilities of energy use. This will be a suitable sce-

nario to use the Gaussian Process Regression, and the energy use

histograms are shown below in Fig. 2 . It can be seen that four out

of six buildings have joint Gaussian distributions excluding Office-

1 and Hotel-2, and the Shopping Mall-1 and 2 are significant joint

Gaussian distributed, which were revealed by visualization. 

2.4. Multivariate linear regression 

Multivariate linear regression is quite popular in the statistical

analysis of most physical systems, due to its high computation effi-

ciency and ability to clearly and directly illustrate the relationship

between inputs and outputs. Our model is conducted as: 

y i = β0 + β1 x i1 + β2 x i2 + . . . + βp x ip , i = 1 , . . . , n. (8)

where 

y i is the i th response, which is the electricity energy use at i th

time step; 

βk is the k th coefficient, and β0 is the constant term (also called

intercept); 

x ij is the i th observation on the j th dependent variables after

data transformation, j = 1,…p, which is the combination of

meteorological and occupant behavior parameters. 

2.5. Prediction result evaluation algorithms 

The efficiency and accuracy levels of these algorithms were

evaluated and compared on data sets collected through the Build-

ing Energy Management System, whose data were stored in a SQL

server database. The necessary procedure, such as data cleaning,

filtering and parsing, was integrated into the algorithms to increase

the reliability of the data. The basic prediction algorithm was es-

tablished by offline data to find out an optimal kernel function and

inputs combination, and then tested in online prediction including
raining and testing in order to compare different algorithms on

he compatibility of large scale actual building energy data. 

Root Mean Squared Error (RMSE) and Normalized Mean Bias Er-

or (NMBE) were used as statistical evaluation criteria to measure

he deviation of the predicted values from actual operations [30] .

o achieve a more accurate evaluation of the prediction results, co-

fficient of variance RMSE (CV-RMSE) was used instead of classical

ias determinant RMSE to avoid ambiguity [31,32] . 

The variations of CV-RMSE and NMBE values are mainly de-

ermined by different operation schedules and weather conditions,

nd a result fitted with a lower CV-RMSE and NMBE is usually fa-

orable. Based on ASHRAE criteria, when hourly calibration data

re used, these requirements shall be 30% and 10%, respectively

38] . Since our data have a more dense time interval (15 min), if

hese criteria can meet the ASHRAE requirement, then the predic-

ion deviations are within the allowable range, and a small amount

f larger deviations beyond these ranges can be also acceptable. 

Another coefficient of determination in the model evaluation is

 -square [33] . Since more than one variable were utilized in the

esearch, adjusted R -square was eventually utilized to improve the

erformance of R -square, which is designed to handle large size

ata with multiple inputs to eliminate the negative effect of ex-

ra explanatory variables. The adjusted R -square is represented as

34] : 

djusted R − square = R 

2 − (1 − R 

2 ) 
p 

n − p − 1 

= 1 − (1 − R 

2 ) 
n − 1 

n − p − 1 

(9)

In this equation, n is the size of data/sample size, and p is the

umber of exploratory variables, R 2 means R -square. Adjusted R -

quare can eliminate the bias by increasing exploratory variables,

hich is a measure of suitability of alternative nested sets, and

hus it is particularly useful in the feature selection stage of build-

ng model [35] . A higher adjusted R -square is usually preferred. 

Average deviation is another criteria which can reveal the per-

entage deviations of the whole data set, and it is represented as:

 v erage De v iation = 

| y ∗ − y | × 100% (10)

y 
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. Data prediction process 

.1. Building site and data monitoring system 

The studied buildings are all located in Shanghai, China, with

 long hot and humid summer which can last for four and a

alf months, and also a contradictory long and cold winter which

an last another four months. The temperature fluctuation during

houlder seasons is usually significant with the temperature vari-

tion higher than 10 °C, even though it has minor effect on the

ir-conditioning energy use based on our preliminary study using

orrelation factors. Because during that period, people used to ad-

ust their clothing patterns to handle the temperature vibration in-

tead of using air-conditioning systems to improve occupant ther-

al comfort. Energy sub-metering systems were widely used to

ecord the electricity use of an entire building and the key com-

onents of the building systems including lighting and plugs, ele-

ators and pumps, HVAC systems and miscellaneous items. All of

hese data were uploaded to a central server and stored in a SQL

erver database, which were used in this study for direct down-

oad, export and prediction, as well as further smart energy man-

gement applications [36] . These data were previously used in of-

ine computation for a simple analysis and have great potential

n further research and data mining during energy prediction and

mart building operation. 

In Shanghai, more than 1500 large commercial buildings

 > 20,0 0 0 m 

2 ) [37] have their electrical energy use sub-metered,

nd most of their energy use are recorded and stored in a Mi-

rosoft SQL server database. Some buildings have their data acces-

ible to the development of prediction algorithms in this research.

t was assumed that the baseline energy consumption is a steady

rocess with random white noise, and the load of the individual

one is relatively consistent within a day. The time interval of data

onitoring is 15 min, and missing data are completed through the

ata pre-process using a linear interpolation. 

In this research, six buildings were studied, including two shop-

ing malls, two hotels, and two office buildings ( Table 1 ). They all

ave different long-term and short-term operation schedules. Due

o the common energy consumption pattern in Shanghai, these

uildings all use electricity for lighting, office equipment, security,

levators and HVAC systems. In other words, the electricity usage

quals to the whole building energy consumption. 

.2. Data preprocess and selected parameters 

The development of the prediction methods went through two

ajor stages: the preliminary offline model development and then

he online large scale test. The offline model development involves

mall scale historical data analyzed using a personal laptop, while

he online test is based on real data extracted from the SQL server

atabase and the optimally selected methodologies. All the com-

arisons conducted in the study are based on the online test re-

ults. 

Based on the offline data association analysis, multiple parame-

ers collected through the building information monitoring system

ere tested to identify their correlation with electricity usage. Crit-

cal parameters in this hierarchy analysis include dry bulb temper-

ture, wet-bulb temperature, enthalpy, human activity and opera-

ion schedule. 

In the online prediction algorithm tests, a prediction program

n a remote computer was set up to run automatically at a fixed

ime during different days, which would generate a numeric matrix

s the result. The prediction will then be compared to the actual

alues simultaneously. The program can self-adjust its key coeffi-

ients and kernel variables according to the behavioral pattern of

he most recent data. 
Standardized association factors were used as feature extrac-

ion methods to investigate the correlation between input and out-

ut variables. The correlation analysis illustrated that the dry-bulb

emperature, wet-bulb temperature and enthalpy are the most in-

uential meteorological parameters, while other factors, including

umidity level, etc., have negative or zero contribution to the en-

rgy usage. The standardization of parameters was proved to be

eneficial to improve the reliability of original data, and dimen-

ion reduction approaches were applied in the study to reduce the

omplexity of computation. 

The occupancy schedule is a kernel parameter in energy predic-

ion, the most important factor is occupied and unoccupied hours

hich will greatly impact the energy use because occupants will

se heating, electricity plug, office equipment, and air-conditioning

evices. The schedule used in this study was extracted from the

uilding operation and maintenance log considering the national

olidays and off work hours. 

The data being used in the prediction still have outliers or miss-

ng points that may lead to unexpected deviations. For example,

ffice-2 has a large number of zero energy use, which cover 9.62%

f the total data points, and the number of zero values for Hotel-1

ccounts for 0.13%, based on the maintenance log. There should be

o zero values because these buildings are in operation constantly,

nd thus these zeros were intentionally eliminated in the predic-

ion. Large deviations also exist. For example, 0.16% of accumulated

nergy use of Office-2 are much higher than the ordinary energy

onsumption, while 0.004% of values for Shopping Mall-1 are too

arge, which are thus suspected as monitoring bias, since these val-

es are far beyond the reasonable range of the normal maximum

nergy use for these buildings. After eliminating all the zero values

nd large bias, all the rest data were used to generate prediction

lgorithms. 

.3. Training set and test set split 

The development of the prediction methods relies on high qual-

ty training and test data split approaches, and in this study, a self-

earning method was applied. Specifically, the algorithms take one

ay’s data as the test data and the 29 days’ data prior to this day

s the training data, since the energy use of the testing day (re-

ated to the test data) is affected more significantly by the data

or the days closer to it, and a moving weighted average was used

o increase the weight of nearby days and also include the days

rior to 29 days being used. After one prediction was done, the

ethod used will automatically move to the next day and con-

inue the same process, until the energy use of the last day in the

hole time period was predicted successfully. In the end, the al-

orithm will combine all the prediction results and put them to-

ether according to their timestamps to compare with actual val-

es. 

After finalizing the training and test sets, to further improve the

omputational speed and accuracy, the data set was split based on

ime step. For example, all the data points at 6:00 pm were ex-

racted from the training set and then regrouped to predict the

nergy use at 6:00 p.m. in the test set, and this process was re-

eated for all the time steps. 

A simplified visualization is shown as below, where the above

gure is an example of the training set, and the test set is shown

n the figure below ( Fig. 3 ). 

In general, our training and test data have similar behaviors, in-

icating that neither significant over-fitting nor under-fitting issue

ccurs. For example, the above figure showed the energy use being

redicted for a typical day. The statistical criteria for the training

nd test data, including RMSE, R -square and NMBE, all meet the

SHRAE’s requirement with minor differences. 
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Fig. 3. Visualization of training data and test data and their prediction result. 
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4. Evaluation of prediction results 

4.1. Data visualization of original values 

Three data visualization approaches were applied to all data

sets among all the time intervals, and some representative scenar-

ios of certain days are shown in Fig. 4 (a). A weekly box plot was

used to reflect the weekly energy use of ten months during the

year of 2017. Significant data deviations from typical data distri-

butions were shown in red, and the histogram was used for the

whole data set visualization and deviation analysis. The overall re-

view of the data set indicates the significant energy use on a daily

and weekly basis for the target building Office-1, which is an of-

fice building, during night and weekend or holiday, and the en-

ergy use is usually lower than that during the workday, which

matches the original assumption based on energy use patterns, i.e.,

energy use is low during night and holiday while during workday

the building consumes more energy. The other two visualization

methods showed different energy use patterns of other buildings.

For example, for the two shopping malls, there is no obvious dif-

ference between holiday and weekday in terms of the typical oper-

ation schedule, and thus the energy use curves are more driven by

moving averaged ambient air temperature, as shown in Fig. 4 (b).

Fig. 4 (c) illustrates the comparison of original energy use pattern

of these buildings, and it can be seen that Shopping Mall −1, Shop-

ping Mall-2, Hotel-1 and Hotel-2 are mainly driven by ambient air

temperatures, while some maintenance works or system upgrad-

ing may affect their energy use curves significantly. Office-1 and

Office-2 have another patterns, and their energy use is quite low

during weekend and holiday due to the absence of occupants, in-

dicating that their schedules have a more significant impact on en-

ergy use than other factors. 

4.2. Statistical analysis of prediction results 

Statistical analysis of prediction results in terms of statistical

criteria and computation time are included in this study. In gen-

eral, an algorithm with the least computation time, the highest R -

square and the least NMBE and CV-RMSE is preferred. The data

prediction results for Office-1 by using the support vector machine

is shown below in Fig. 5 (a). Fig. 5 (b) shows the energy usage com-

parison between the predictions using different methods and the
ctual energy consumption of Office-1, the Office-1 was selected

ecause it covered all typical prediction bias which represent all

he scenarios for all buildings. 

As shown in Fig. 5 (a), the prediction results have the same

endency and variation with the actual energy use, including the

hange point, and only a small number of deviations were ob-

erved through the visualization, which were derived from the un-

teady vibration in terms of occupant activities and schedules at

oon. Another improvement is that the box plot ( Fig. 5 (a)) shows

ess faulty operations in the weekly data visualization, and the dis-

ribution becomes more steady and is close to the mean value of

he operational data. In fact, the values of the faulty boxes are re-

uced to 0% in the prediction results. Fig. 5 (b) illustrates the com-

arison of the actual and predicted values during a short time pe-

iod, which represents a small amount of severe deviations. Still,

he prediction tends to have more steady schedules than the actual

ata, which is represented through an optimized operation curve.

he SVM curve shown in Fig. 5 (b) represents the result for a short

eriod of time with more significant deviations compared to the

VM results shown in Table 2 , which represent the results for a

onger time period (10 month). 

It is clearly revealed by Fig. 5 (b) that SVM gives a significant

eviation during the first day, which might be a potential/inherent

ssue in using SVM in such applications. To find out the possible

eason for that, more simulations and studies would be needed

n the future study. ANN has relatively large deviations during the

ast two days that are weekends, while GPR and MLR have no such

rrors. Uncommon fault greatly decreases the potential for using

NN and SVM in a future large scale energy use prediction, and a

tudy on the longer term of energy use prediction suggested that

NN tends to have more severe deviations than other methods. 

Popular statistical criteria for prediction are also considered, as

hown in Table 2 , for Office-1 with high energy density and more

teady operation schedule. The values for the Adjusted R -square,

MBE, and CV-RMSE of four different methods are quite similar,

o the prediction evaluation results cannot generate any preference

mong them through the individual evaluation, and thus these cri-

eria must be considered together. Still, the computation time has a

evere difference. ANN usually took quite a longer time to generate

easonable results, while GPR was much faster than all the other

ethods. At the current stage, SVM, GRP and MLR can all satisfy

he requirement of quick response predictions, while ANN is not
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Fig. 4. Data visualization of typical building operations based on original data (a). representative scenarios of certain days of Office-1, (b) overall data review of Office-1, (c) 

time series plot of all six buildings in terms of energy usage and moving averaged temperature. 

Table 2 

Adjusted R -square, NMBE, CV-RMSE and computation time of the prediction @ Office-1. 

Prediction methods/Evaluation criteria Adjusted R -square CV-RMSE NMBE Computation time/CPU time (s/loop) 

Artificial neural network 0.822 28.691 0.550 26.065 

Gaussian process regression 0.878 23.778 0.362 0.02 

Multivariate linear regression 0.870 24.550 2.610 2.670 

Support vector machine 0.864 25.101 3.004 1.354 
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t

uperior compared to the others. The computer used for all these

imulations has a common configuration for a laptop, i.e., Intel(R)

ore(TM) i5-5200 U CPU @ 2.20GHs 2.19 GHz as the processor. 

.3. Comparison of different methodologies for different buildings 

To identify an optimal method in energy prediction for different

ypes of buildings, the results of different methods are compared
y looking at their deviations of energy use values, deviation per-

entages, and statistical criteria. 

The commonly used criteria in the statistical regression and

rediction are used here to investigate the goodness of data fit-

ing, including the adjusted R -square, NMBE, and CV-RMSE. Aver-

ge deviations are also calculated and represented. Their effects

ere considered together and optimal comparative evaluations of

hese methods were given. 
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Fig. 5. Visualization of energy use prediction (a) weekly prediction results box plot of Office-1, (b) energy use prediction versus actual value of Office-1. 
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The average deviations of the six studied buildings vary a lot as

shown in Fig. 6 , and these high fluctuations reflect that there is not

a once-for-all method suitable for all types of buildings. SVM be-

haves best for Hotel-1 and Hotel-2; MLR also behaves best on these

two and slightly better than SVM. ANN behaves best for Hotel-1

and Hotel-2 but is still the worst among the four methods, and

GPR has a different behavior pattern among these two buildings

while it is worse than MLR in Hotel-2 but same as MLR in Hotel-1.

For Office-2 and Shopping Mall-2, their high average deviations in-

dicate that none of these methods are very suitable for these two

buildings. 

Based on the ASHRAE Guideline 14-2002 [38] , all of our predic-

tions can meet the requirements for NMBE and CV-RMSE, which

indicates that the prediction methods are acceptable for further

applications in real building energy predictions. 

From the perspective of statistical analysis, the adjusted R -

square, NMBE, and CV-RMSE should be evaluated together, and

the methods with high R -square and low NMBE and CV-RMSE are

identified as the optimal methods. Figs. 7–9 indicate that MLR and

GPR methods usually stand out at some rare scenarios. ANN usu-

ally works better to minimize NMBE, while MLR tend to minimize

the average deviation based on percentage, SVM works well for
uildings with a steady operation schedule, and GPR works best

or Office-1 and Shopping Mall-2, which typically have the highest

ncertainty that is likely caused by unrecorded and unpredictable

ccupant behaviors. 

It can be seen that for different comparison criteria, the same

ethod might receive slightly different evaluation results, which

eflects the complexity of our building energy use patterns. By av-

raging different criteria, however, we can evaluate the effective-

ess of different methods. 

As a conclusion, the optimal algorithm for different buildings

aries a lot. Different methods have their own optimal applica-

ion scenarios. MLR is considered to be optimal for the buildings

f Office-2, Shopping Mall-1, Hotel-1 and Hotel-2. GPR is consid-

red to be optimal for the Office-1 and Shopping Mall-2, while

PR and SVM are identified as the fastest method. For different

eviation requirements, MLR is best when least average deviation,

NN is best when NMBE minimization is required but usually have

ow adjusted R -square coefficients, GPR can usually reach least CV-

MSE. 

The comparison of prediction methods for Office-1 and Office-

 shows a great difference between their prediction results, even

hough they have a similar function/building type. Office-2 have
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Fig. 6. Average deviations of the annual data prediction distribution of the six buildings. 

Fig. 7. Adjusted R -square of the annual data prediction distribution of the six buildings. 
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ore data points effected by unknown reasons which lead to high

eviations by all four methods especially ANN because ANN would

end to overfitting the energy use. 

Another aspect of evaluating the prediction is data distribution,

hich illustrates the data proficiency and result reliability. Origi-

al data visualizations illustrate the energy usage as a non-ideal

aussian distribution, and the temperature being recorded as the

rincipal independent variable is non-Gaussian either, even though

or certain buildings they can be treated as joint-Gaussian distribu-

ions. 

The prediction result evaluations have more dimensions of data

istributions that can be analyzed, and all percentage deviations

elated to the four prediction algorithms show quasi-Gaussian dis-

ributions, including a dual peak joint Gaussian distribution for

hopping Mall-2, which indicates that the difference between the

ctual and predicted values is partially dependent on a single fac-

or. The central limit theorem has indicated that if the observations

re huge enough, the whole data set will follow the Gaussian dis-

ribution, even if each observation is not Gaussian distributed [25] .

t can be proved that the data sets used in all these prediction
ethods are big enough to represent the actual building operation

onditions, as shown in the sample visualization plot in Fig. 10 . In

he Gaussian distributions as shown in this figure, y-axis illustrates

he number of data points for the six buildings, and x-axis repre-

ents the different prediction algorithms. The Kolmogorov-Smirnov

est shows our results are not ideal enough, which can be proved if

ore bins are used in the histogram. Hence, bigger data sets with

igh density are needed in the future analysis, and the histogram

isualization can have more bins in order to increase their accu-

acy. 

Despite the great performance of the overall prediction, severe

eviations at certain time steps still exist. Based on the detailed

ata verification, the extreme bias in the prediction process is due

o the original data faults, which requires the improvement of data

uality and sensor calibration. Sensor malfunction or data acquisi-

ion bias were identified as the most relevant and common causes.

or example, the office building has constant zero electricity con-

umption for two weeks, while the utility bills show the actual

nergy use are not zero during these two weeks. This could re-

ult in great deviations and thus negatively affect the training of
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Fig. 8. CV-RMSE of the annual data prediction distribution of the six buildings (blue line indicates the threshold defined by the ASHRAE standard). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. NMBE of the annual data prediction distribution of the six buildings (blue line indicates the threshold defined by the ASHRAE standard). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the models. The data preprocess can eliminate most of these sig-

nificant deviations, but minor errors cannot be all detected and

deleted. Another cause of deviation is due to the meteorological

data. Most of the sensors are not well located at their correct posi-

tions, which thus cannot reflect the actual weather conditions for

the target buildings. Therefore, the weather monitoring sensors are

going to be modified for certain buildings in the future analysis. 

5. Discussion 

The limitation of the accuracy that restricts the use of online

prediction is human activity data, especially the sudden change

of occupant numbers and equipment operation by maintenance

staffs. By using the number of occupants with their schedule and

clustering them to a simplified data set, our model can draw a

conclusion to take occupancy into consideration without sacrific-

ing too much computation efficiency. One alternative solution is to

use the equipment operation status instead of direct human ac-

tivities as an independent variable in a real-time prediction, since
 large portion of energy use is determined by building mechani-

al equipment, which has the highest variation, and thus detailed

ata of the equipment are typically needed. The equipment op-

ration can be recognized as a reflection of an occupant behav-

or and can be monitored by using building energy management

ystems (BMS). The utilization of these data can improve the en-

rgy prediction greatly. Thus the acquisition of data from both BMS

nd sub-metering systems is necessary. Most buildings in Shanghai

ave different suppliers for BMS and sub-metering systems, and

hus it is needed to integrate the data among different resources

r suppliers, rather than only rely on the sub-metering data in the

urrent database. 

Furthermore, the whole building energy use prediction is di-

ectly associated to utility bills, and it can help to smooth the

peration curve by using energy storage devices, to decrease or

hift the peak demands, and to reduce unnecessary utility bills and

aximum demand (MD). It can also be used in a building design

ecision making process to determine whether an energy storage

evice or high frequency response control is needed, based on peer
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Fig. 10. Visualization of the annual data prediction distribution (x-axis represents percentage error of four algorithms, the y-axis represents number of data points). 

g  

t  

e  

c  

m

6

 

c  

p  

n  

c

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

b  

o  

a  

t  

r  

m  

g  

m  

o

 

i  

w  

r  

b

roup comparison of buildings with similar functions. Meantime,

he Chinese government is promoting the use of whole building

nergy use sub-metering of different types of energy sources, in-

luding natural gas, water, hot water and steam, which will provide

ore data for energy prediction and management in the future. 

. Conclusion and future work 

This paper introduced four electricity use prediction and fore-

asting methods, based on multivariate linear regression, Gaussian

rocess regression, support vector machine, and artificial neural

etwork. In addition, the accuracy of prediction and computation

omplexity were compared and discussed. 

Based on the results shown above, several core conclusions

ere drawn and shown below. 

1) The proposed electricity consumption algorithms can all be

used in electrical energy prediction regardless of different

weather conditions or occupancy schedules, and the best re-

sults were obtained in the energy use prediction of an office

building due to its steady schedule. 

2) The Gaussian process regression method can generate the pre-

diction results with the least CPU time for most of the scenarios

and MLR have the lowest relative deviation with low CPU time,

since results of MLR can be best explained by using building

physical knowledge, it is of great potential for use in a real-

time monitoring system for building energy prediction with op-

timization algorithms. 

3) The support vector machine method has a steady behavior with

low accuracy deviations, and the computation time is relatively

low. For small data set with nonlinear relationship between dif-

ferent parameters, SVM is recommended especially in real-time

control system. 

4) Artificial neural network has the least behavior performance in

terms of predication accuracy, with high CPU time on all of

these occasions. For ANN with many hidden layers and nodes,

the deficiency of computation complexity would negatively af-
fect its application in a real-time building monitoring system.

Due to its low accuracy, in industrial applications involving

large scale building energy use data, ANN is not preferred un-

less there are very high data uncertainties. 

5) Considering the equilibrium of prediction accuracy and the

least computation time, multivariate linear regression is con-

sidered as the best method in the case study with simplified

inputs, while SVM is the best method with complex inputs and

nonlinear relationship. To ensure a faster and more reliable pre-

diction, large data sets and real-time methods can be utilized,

and dimension reduction methods will be a good option. De-

tailed occupant activity can be a good option to greatly increase

the prediction accuracy. 

6) Based on the evaluation results of different buildings, it can be

inferred that using principal components can generate great re-

sults without sacrificing much accuracy and can increase the

computational efficiency significantly. So the input variables

should be calibrated and verified as principal components be-

fore different methodologies can be concluded for different

types of buildings. 

The current prediction methods are based on one year’s data

ocusing on only building electricity use. In the future work, it can

e extended to a larger system by integrating thermal dynamics

f building equipment and complex systems. These methods can

lso be used in adjusting a control system based on the devia-

ion of prediction from the actual operation monitored by using a

eal-time monitoring system. As the tendency of smart cities, these

ethods could be used to predict the energy use of a district and

uide the use of energy storage devices to reduce the peak de-

ands and fix missing data or detect sensor value deviations and

perational faults. 

Additionally, the way to record the occupancy schedule can be

mproved further in the future study from the binary variables that

ere used in this study to more parameters in representing and

eflecting the detailed occupant behaviors, such as occupant num-

ers, window on/off, or equipment on/off by occupants. 
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From the perspective of data science application, the current

prediction methods focus on classical statistical learning methods,

which have the limited parameter tuning ability [39] in the big

data application. In the future, ensemble methods, such as Ran-

dom Forest and deep learning methods, will be utilized to establish

more accurate and reliable prediction algorithms based on elabo-

rate data with detailed occupant behaviors, and hyper-parameter

tuning, such as batch size or number of layers and nodes, will be

used to eliminate under-fitting and over-fitting problems [39,40] . 
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